To calculate the lattice energy of MgO, we can use the Born-Haber cycle or the formula derived from Coulomb's Law and the Born-Lande equation. Here, we will use the formula:Lattice Energy U = N * A * e^2 * |Z1 * Z2| / 4 * * 0 * r0 where:N = Avogadro's number 6.022 x 10^23 mol^-1 A = Madelung constant for MgO, A = 1.748 e = elementary charge 1.602 x 10^-19 C Z1 = charge on Mg2+ ion +2 Z2 = charge on O2- ion -2 0 = vacuum permittivity 8.854 x 10^-12 C^2 J^-1 m^-1 r0 = sum of ionic radii 0.072 nm + 0.140 nm First, we need to convert the sum of ionic radii from nm to meters:r0 = 0.072 + 0.140 * 10^-9 m = 0.212 * 10^-9 mNow, we can plug in the values into the formula:U = 6.022 x 10^23 mol^-1 * 1.748 * 1.602 x 10^-19 C ^2 * |-2 * 2| / 4 * * 8.854 x 10^-12 C^2 J^-1 m^-1 * 0.212 * 10^-9 m U = 6.022 x 10^23 mol^-1 * 1.748 * 2.566 x 10^-38 C^2 * 4 / 4 * * 8.854 x 10^-12 C^2 J^-1 m^-1 * 0.212 * 10^-9 m U = 1.748 * 6.022 x 10^23 mol^-1 * 10.264 x 10^-38 C^2 / * 8.854 x 10^-12 C^2 J^-1 m^-1 * 0.212 * 10^-9 m U = 1.053 x 10^-14 C^2 / 2.356 x 10^-21 J^-1 m U = 4474.5 J/molThe lattice energy of MgO is approximately 4474.5 J/mol.